Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress.

Identifieur interne : 000122 ( Main/Exploration ); précédent : 000121; suivant : 000123

Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress.

Auteurs : Neera Garg [Inde] ; Kiran Saroy [Inde]

Source :

RBID : pubmed:31838702

Descripteurs français

English descriptors

Abstract

Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.

DOI: 10.1007/s11356-019-07300-6
PubMed: 31838702


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N
<sub>2</sub>
fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress.</title>
<author>
<name sortKey="Garg, Neera" sort="Garg, Neera" uniqKey="Garg N" first="Neera" last="Garg">Neera Garg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India. gargneera@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saroy, Kiran" sort="Saroy, Kiran" uniqKey="Saroy K" first="Kiran" last="Saroy">Kiran Saroy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31838702</idno>
<idno type="pmid">31838702</idno>
<idno type="doi">10.1007/s11356-019-07300-6</idno>
<idno type="wicri:Area/Main/Corpus">000223</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000223</idno>
<idno type="wicri:Area/Main/Curation">000223</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000223</idno>
<idno type="wicri:Area/Main/Exploration">000223</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N
<sub>2</sub>
fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress.</title>
<author>
<name sortKey="Garg, Neera" sort="Garg, Neera" uniqKey="Garg N" first="Neera" last="Garg">Neera Garg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India. gargneera@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saroy, Kiran" sort="Saroy, Kiran" uniqKey="Saroy K" first="Kiran" last="Saroy">Kiran Saroy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, Panjab University, Chandigarh, 160014</wicri:regionArea>
<wicri:noRegion>160014</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Cajanus (physiology)</term>
<term>Genotype (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nickel (toxicity)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Polyamines (MeSH)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Symbiosis (MeSH)</term>
<term>Trehalose (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Cajanus (physiologie)</term>
<term>Fixation de l'azote (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Nickel (toxicité)</term>
<term>Polluants du sol (toxicité)</term>
<term>Polyamines (MeSH)</term>
<term>Racines de plante (microbiologie)</term>
<term>Symbiose (MeSH)</term>
<term>Tréhalose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Nickel</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cajanus</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cajanus</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Nickel</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Genotype</term>
<term>Nitrogen Fixation</term>
<term>Polyamines</term>
<term>Symbiosis</term>
<term>Trehalose</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Fixation de l'azote</term>
<term>Génotype</term>
<term>Polyamines</term>
<term>Symbiose</term>
<term>Tréhalose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N
<sub>2</sub>
fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31838702</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N
<sub>2</sub>
fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress.</ArticleTitle>
<Pagination>
<MedlinePgn>3043-3064</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-019-07300-6</ELocationID>
<Abstract>
<AbstractText>Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N
<sub>2</sub>
fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garg</LastName>
<ForeName>Neera</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9600-8482</Identifier>
<AffiliationInfo>
<Affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India. gargneera@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saroy</LastName>
<ForeName>Kiran</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>25-1/2014-15(BSR)/7-151/2007</GrantID>
<Agency>University Grants Commission</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011073">Polyamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7OV03QG267</RegistryNumber>
<NameOfSubstance UI="D009532">Nickel</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>B8WCK70T7I</RegistryNumber>
<NameOfSubstance UI="D014199">Trehalose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036561" MajorTopicYN="N">Cajanus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009532" MajorTopicYN="N">Nickel</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011073" MajorTopicYN="N">Polyamines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014199" MajorTopicYN="N">Trehalose</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Nickel</Keyword>
<Keyword MajorTopicYN="N">Pigeon pea</Keyword>
<Keyword MajorTopicYN="N">Polyamines</Keyword>
<Keyword MajorTopicYN="N">Trehalose</Keyword>
<Keyword MajorTopicYN="N">Ureides</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31838702</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-019-07300-6</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-019-07300-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Mol Sci. 2009 Sep 01;10(9):3793-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19865519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(1):5-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 14;5:547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Nov;132:641-651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30340176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Jun;8(6):971-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16689718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Jul;240(1):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24659098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Jun;105(7):1141-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1944 Jan;19(1):76-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2011 Jan;57(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 13;5:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24592271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Microbiol J. 2010 Aug 17;4:83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jun;228(1):37-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18320213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2014;16(6):554-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24912242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1289-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24800789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2000 Aug 8;157(1):113-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1994 Aug;14(4):405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7917428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 08;7:1358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27660633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2012 Mar;58(3):293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22356605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1997 Sep 15;154(2):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9311112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jan 10;9:1945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30687350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Pollut Bull. 2015 Jun 15;95(1):419-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25840866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2011 Jan;86(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21170705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2016 Nov;23(21):21206-21218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27491421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Jan;6(1):19-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19935661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Jan;26(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2017 Jan;181(1):464-482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27687587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2013 Jun 1;454-455:51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23538136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Nov;33(11):1828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jun;81(2):538-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Jan 15;230(1):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1992;54:579-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1562184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 18;5:95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24672533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Oct 30;20(14):1161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14587100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Feb;74(3):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Aug;164(8):1062-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(2):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Aug;20(6):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):370-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Mar;163(5):497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1970 Jan;33(1):143-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5413235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Nov 20;18(1):287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30458716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):239-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(4):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:805-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Jan;145(1):179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2001;20(3):301-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11354606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Nov;28(8):727-746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30043257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Oct 9;165(15):1620-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18242770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23588949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2018 Apr;64(4):265-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29390194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 15;5:11433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26073760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2007 Sep;69(2):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 07;9:301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29563923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):1086-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 May 08;9:614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29868070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2011 Apr;13(4):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21598797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Feb;199-200:79-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23265321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Sep;22(17):13179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25929455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1998 Jun 1;259(2):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Garg, Neera" sort="Garg, Neera" uniqKey="Garg N" first="Neera" last="Garg">Neera Garg</name>
</noRegion>
<name sortKey="Saroy, Kiran" sort="Saroy, Kiran" uniqKey="Saroy K" first="Kiran" last="Saroy">Kiran Saroy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31838702
   |texte=   Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31838702" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020